Science

African coastal camera network efforts at monitoring ocean, climate, and human impacts


  • Sutton-Grier, A. E., Wowk, K. & Bamford, H. Future of our coasts: the potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 51, 137–148 (2015).


    Google Scholar
     

  • Holman, R., Stanley, J. & Ozkan-Haller, T. Applying video sensor networks to nearshore environment monitoring. IEEE Pervas. Comput. 2(4), 14–21 (2003).


    Google Scholar
     

  • He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the anthropocene. Curr. Biol. 29(19), R1021–R1035. https://doi.org/10.1016/j.cub.2019.08.042 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wong, P. P. et al. Coastal systems and low-lying areas. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Field, C. B. et al., eds.), 361–409 (Cambridge University Press, 2014).

  • Un-Habitat. State of the World’s Cities 2010/11: Cities for All: Bridging the Urban Divide 1st edn. (Routledge, 2008). https://doi.org/10.4324/9781849774864.

    Book 

    Google Scholar
     

  • Tanner, T. et al. Political economy of climate compatible development: artisanal fisheries and climate change in Ghana. In Making Climate Compatible Development Happen (ed. Nunan, F.) (Routledge, 2017).


    Google Scholar
     

  • Sakyi, E. M., Jia, C., Ampofo-Yeboah, A. & Aglago, A. Fish smoking in Ghana: A review. J. Fish. Sci. 13(3), 013–024 (2019).


    Google Scholar
     

  • Adeyeye, S. A. O. & Oyewole, O. B. An overview of traditional fish smoking in Africa. J. Culinary Sci. Technol. 14(3), 198–215 (2016).


    Google Scholar
     

  • Jonah, F. E., Adjei-Boateng, D., Agbo, N., Mensah, E. A. & Edziyie, R. E. Assessment of sand and stone mining along the coastline of Cape Coast, Ghana. Ann. GIS 21(3), 223. https://doi.org/10.1080/19475683.2015.1007894 (2015).

    Article 

    Google Scholar
     

  • Saarinen, J., Fitchett, J. & Hoogendoorn, G. Climate Change and Tourism in Southern Africa 1st edn. (Routledge, 2022). https://doi.org/10.4324/9781003102618.

    Book 

    Google Scholar
     

  • Atanga, R. & Tichaawa, T. M. Risk of floods impacting tourism in the coastal cities of West Africa. Sustain. Urban Tour. Sub-Saharan Afr. https://doi.org/10.4324/9781003024293-14 (2020).

    Article 

    Google Scholar
     

  • Alves, B., Angnuureng, D. B., Morand, P. & Almar, R. A review on coastal erosion and flooding risks and best management practices in West Africa: What has been done and should be done. J. Coast. Conserv. 24, 38. https://doi.org/10.1007/s11852-020-00755-7 (2020).

    Article 

    Google Scholar
     

  • Croitoru, L., Miranda, J. J. & Sarraf, M. The cost of coastal zone degradation in West Africa: Benin, Côte d’ivoire, Senegal and Togo. (The World Bank Group, 2019). https://www.worldbank.org/en/region/afr/publication/west-africas-coast-losing-over-38-billion-a-year-to-erosion-flooding-and-pollution.

  • Feka, N. Z. & Ajonina, G. Drivers causing decline of mangrove in West-Central Africa: A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 7(3), 230. https://doi.org/10.1080/21513732.2011.634436 (2011).

    Article 

    Google Scholar
     

  • IPCC Climate change 2007: Impacts, adaptation and vulnerability. In Contributing of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry, M. L. et al.) (Cambridge University Press, 2007).


    Google Scholar
     

  • Luijendijk, A. et al. The state of the world’s beaches. Sci. Rep. 8(1), 1–11 (2018).


    Google Scholar
     

  • Vousdoukas, M. I. et al. African heritage sites threatened as sea-level rise accelerates. Nat. Clim. Chang. 12, 256–262 (2022).

    ADS 

    Google Scholar
     

  • Guerrera, F., Martín-Martín, M., Tramontana, M., Nimon, B. & Kpémoua, K. E. Shoreline changes and coastal erosion: the case study of the coast of Togo (Bight of Benin, West Africa Margin). Geosciences 11, 40 (2021).

    ADS 

    Google Scholar
     

  • Aman, A. et al. Physical forcing induced coastal vulnerability along the Gulf of Guinea. J. Environ. Prot. 10, 1194–1211 (2019).


    Google Scholar
     

  • Dada, O. et al. Seasonal shoreline behaviours along the arcuate niger delta coast: Complex interaction between fluvial and marine processes. Cont. Shelf Res. 122, 51–67 (2016).

    ADS 

    Google Scholar
     

  • Almar, R. et al. Response of the Bight of Benin (Gulf of Guinea, West Africa) coastline to anthropogenic and natural forcing, part 1: Wave climate variability and impacts on the longshore sediment transport. Cont. Shelf Res. 110, 48–59 (2015).

    ADS 

    Google Scholar
     

  • Nicholson, S. E. Climatic and environmental change in Africa during the last two centuries. Clim. Res. 17, 123–144 (2001).


    Google Scholar
     

  • Hzami, A. et al. Alarming coastal vulnerability of the deltaic and sandy beaches of North Africa. Sci. Rep. 11, 2320. https://doi.org/10.1038/s41598-020-77926-x (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Amrouni, O., Hzami, A. & Heggy, E. Photogrammetric assessment of shoreline retreat in North Africa: anthropogenic and natural drivers. ISPRS J. Photogram. Remote Sens. 157C, 73–92 (2019).

    ADS 

    Google Scholar
     

  • Fossi, F. Y., Pouvreau, N., Brenon, I., Onguéné, R. & Etame, J. Evolution du trait de côte de la façade Sud de Cap Cameroun dans l’estuaire du Wouri (Cameroun). J. Sci. https://doi.org/10.13140/RG.2.2.34611.48162 (2018).

    Article 

    Google Scholar
     

  • Abessolo, O. G. et al. Assessment of the evolution of Cameroon coastline: An overview from 1986 to 2015. J. Coastal Res. 81, 122–129 (2018).


    Google Scholar
     

  • Cawthra, H. C. & Zyl, F. W. V. Projected inundations on the South African coast by tsunami waves. S. Afr. J. Geom. 4, 2. https://doi.org/10.4314/sajg.v4i2 (2015).

    Article 

    Google Scholar
     

  • Theron, A. K. & Rossouw, M. Analysis of potential coastal zone climate change impacts and possible response options in the southern African region. In: Science real and relevant, 2nd CSIR Biennial Conference, CSIR International Convention Centre Pretoria (2008).

  • Shaghude, Y. W., Mburu, J. W. & Arthurton, R. S. Shoreline Change in Tanzania and Kenya: A Manual for Assessment and Design of Mitigation Strategies (WIOMSA, 2015).


    Google Scholar
     

  • Anthony, E. et al. Response of the Bight of Benin (Gulf of Guinea, West Africa) coastline to anthropogenic and natural forcing, Part 2: Sources and patterns of sediment supply, sediment cells, and recent shoreline change. Cont. Shelf Res. 173, 93–103 (2019).

    ADS 

    Google Scholar
     

  • Almar, R. et al. The Grand Popo beach 2013 experiment, Benin, West Africa: from short timescale processes to their integrated impact over long-term coastal evolution. J. Coastal Res. 70, 651–656 (2014).


    Google Scholar
     

  • Tano, R. A. et al. Assessment of the ivorian coastal vulnerability. J. Coastal Res. 32(6), 1495–1503 (2016).


    Google Scholar
     

  • Abessolo, O. G., Hoan, L. X., Larson, M. & Almar, R. Modeling the Bight of Benin (Gulf of Guinea, West Africa) coastline response to natural and anthropogenic forcing. Reg. Stud. Mar. Sci. 48, 101995. https://doi.org/10.1016/j.rsma.2021.101995 (2021).

    Article 

    Google Scholar
     

  • Giardino, A. et al. A quantitative assessment of human interventions and climate change on the West African sediment budget. Ocean Coast. Manage. 156, 249–265 (2018).


    Google Scholar
     

  • Ndour, A. et al. On the natural and anthropogenic drivers of the Senegalese (West Africa) low coast evolution: Saint Louis beach 2016 COASTVAR experiment and 3D modeling of short term coastal protection measures. J. Coastal Res. 95, 583–587 (2020).


    Google Scholar
     

  • Bergsma, E. W. J. & Almar, R. Coastal coverage of ESA’ Sentinel 2 mission. Adv. Space Res. 65(11), 2636–2644 (2020).


    Google Scholar
     

  • Almar, R. et al. Coastal zone changes in West Africa: Challenges and opportunities for satellite earth observations. Surv. Geophys. 1, 1–27 (2022).


    Google Scholar
     

  • Woodworth, P. L., Aman, A. & Aarup, T. Sea level monitoring in Africa. Afr. J. Mar. Sci. 29(3), 321–330 (2007).


    Google Scholar
     

  • Almar, R. et al. Video-based detection of shorelines at complex meso–macro tidal beaches. J. Coastal Res. 28(5), 1040–1048 (2012).


    Google Scholar
     

  • Pianca, C., Holman, R. A. & Siegle, E. Shoreline variability from days to decades: Results of long-term video imaging. J. Geophys. Res. Oceans 120, 2159–2178 (2015).

    ADS 

    Google Scholar
     

  • Osorio, A. F., Medina, R. & Gonzalez, M. An algorithm for the measurement of shoreline and intertidal beach profiles using video imagery: PSDM. Comput. Geosci. 46, 196–207 (2012).

    ADS 

    Google Scholar
     

  • Holman, R. A., Plant, N. & Holland, T. cbathy: A robust algorithm for estimating nearshore bathymetry. J. Geophys. Res. Oceans 118, 2595–2609 (2013).

    ADS 

    Google Scholar
     

  • Bergsma, E. W. J. & Almar, R. Video-based depth inversion techniques, a method comparison with synthetic cases. Coast. Eng. 138, 199–209 (2018).


    Google Scholar
     

  • Abessolo, G. O. et al. Beach adaptation to intraseasonal sea level changes. Environ. Res. Commun. 2, 051003. https://doi.org/10.1088/2515-7620/ab8705 (2020).

    Article 

    Google Scholar
     

  • Abessolo, G. O. et al. Sea level at the coast from video-sensed waves: Comparison to tidal gauges and satellite altimetry. J. Atmos. Oceanic Tech. 36, 1591–1603 (2019).


    Google Scholar
     

  • Thuan, D. H., Almar, R., Marchesiello, P. & Viet, N. T. Video sensing of nearshore bathymetry evolution with error estimate. J. Mar. Sci. Eng. 7, 233. https://doi.org/10.3390/jmse7070233 (2019).

    Article 

    Google Scholar
     

  • Radermacher, M., Van Wengrove, M. E., Thiel de Vries, J. S. M. & Holman, R. A. Applicability of video-derived bathymetry estimates to nearshore current model predictions. J. Coastal Res. 70, 290–295 (2014).


    Google Scholar
     

  • Abessolo, O. G. et al. Potential of video cameras in assessing event and seasonal shoreline behaviour: A case study at Grand Popo, Benin (Gulf of Guinea). J. Coastal Res. 75, 442–446 (2016).


    Google Scholar
     

  • Abessolo, O. G. et al. Beach response to wave forcing from event to inter-annual time scales at Grand Popo, Benin (Gulf of Guinea). Water 9, 447. https://doi.org/10.3390/w9060447 (2017).

    Article 

    Google Scholar
     

  • Abessolo, O. G. et al. Development of a West and Central Africa regional video camera network to monitor coastal response to multi-scale ocean forcing. In Proceedings of Coastal Dynamics, University of Copenhagen, 1540–1550 (2017).

  • Larson, M., Hoan, L. X. & Hanson, H. A direct formula to compute wave properties at incipient breaking. J. Waterw. Port Coast. Ocean Eng. 136(2), 119–122 (2010).


    Google Scholar
     

  • Abessolo, O. G., Almar, R., Bonou, F. & Bergsma, E. J. Error proxies in video-based depth inversion: Temporal celerity estimation. J. Coastal Res. 95, 1101–1105 (2020).


    Google Scholar
     

  • Abessolo, O. G. et al. Wave influence on altimetry sea level at the coast. Coast. Eng. 180, 104275. https://doi.org/10.1016/j.coastaleng.2022.104275 (2022).

    Article 

    Google Scholar
     

  • Melet, A. et al. Contribution of wave setup to projected coastal sea level changes. J. Geophys. Res. Oceans 125, e016078. https://doi.org/10.1029/2020JC016078 (2020).

    Article 

    Google Scholar
     

  • Pugh, D. T. & Woodworth, P. L. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes (Cambridge University Press, 2014). https://doi.org/10.1017/CBO9781139235778.

    Book 

    Google Scholar
     

  • Marti, F. et al. Altimetry-based sea level trends along the coasts of western Africa. Adv. Space Res. 68(2), 504–522 (2021).

    ADS 

    Google Scholar
     

  • Almar, R., Blenkinsopp, C., Almeida, L. P., Cienfuegos, R. & Catalán, P. A. Wave runup video motion detection using the Radon Transform. Coast. Eng. 130, 46–51 (2017).


    Google Scholar
     

  • Bonou, F. et al. Shoreline and beach cusps dynamics at the low tide terraced Grand Popo beach, Bénin (West Africa): A statistical approach. J. Coastal Res. 81, 138–144 (2018).


    Google Scholar
     

  • Mingo, I. M., Almar, R. & Lacaze, L. Surf and swash dynamics on low tide terrace beaches. Coasts 1, 73–89 (2021).


    Google Scholar
     

  • Angnuureng, D. B., Addo, K. A., Almar, R. & Dieng, H. Influence of sea level variability on a micro-tidal beach. Nat. Hazards 68, 1611–1628. https://doi.org/10.1007/s11069-018-3370-4 (2018).

    Article 

    Google Scholar
     

  • Castelle, B. et al. Rip currents and circulation on a high-energy low-tide-terraced beach (Grand Popo, Benin, West Africa). J. Coastal Res. 70, 633–638 (2014).


    Google Scholar
     

  • Floc’h, F. et al. Flash rip statistics from video images. J. Coastal Res. 81, 100–106 (2018).


    Google Scholar
     

  • Almar, R., Larnier, S., Castelle, B., Scott, T. & Floc’h, F. On the use of the Radon transform to estimate longshore currents from video imagery. Coast. Eng. 114, 301–308 (2016).


    Google Scholar
     

  • Marchesiello, P. et al. On eddy-mixed longshore currents: Video observation and 3D modeling off Grand Popo Beach, Benin. J. Coastal Res. 75, 408–412. https://doi.org/10.2112/SI75-082.1 (2016).

    Article 

    Google Scholar
     

  • Marchesiello, P. et al. Tridimensional nonhydrostatic transient rip currents in a wave-resolving model. Ocean Model 163, 1463–5003 (2021).


    Google Scholar
     

  • Derian, P. & Almar, R. Wavelet-based optical flow estimation of instant surface currents from shore-based and UAV videos. IEEE Trans. Geosci. Remote Sens. 50(10), 5790–5797 (2017).

    ADS 

    Google Scholar
     

  • Angnuureng, D. B. et al. Assessing the challenges of beach quality: The perspective of beach users in Elmina, Ghana. J. Fish. Coastal Manag. 2, 41–55 (2020).


    Google Scholar
     

  • Angnuureng, D. B. et al. Satellite, drone and video camera multi-platform monitoring of coastal erosion at an engineered pocket beach: A showcase for coastal management at Elmina Bay, Ghana (West Africa). Reg. Stud. Mar. Sci. 53(4), 102437. https://doi.org/10.1016/j.rsma.2022.102437 (2022).

    Article 

    Google Scholar
     

  • Angnuureng, D. B. et al. Application of shore-based video and unmanned aerial vehicles (drones): complementary tools for beach studies. Remote Sens. 12, 394–413 (2020).

    ADS 

    Google Scholar
     

  • Taveneau, A. et al. Observing and predicting coastal erosion at the Langue de Barbarie sand spit around Saint Louis (Senegal, West Africa) through satellite-derived digital elevation model and shoreline. Remote Sens. 13, 2454. https://doi.org/10.3390/rs13132454 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Dada, O., Almar, R., Morand, P. & Ménard, F. Towards West African coastal social-ecosystems sustainability: Interdisciplinary approaches. Ocean Coastal Manag. 211, 105746. https://doi.org/10.1016/j.ocecoaman.2021.105746 (2021).

    Article 

    Google Scholar
     

  • Davidson, M. et al. The CoastView project: Developing video-derived coastal state indicators in support of coastal zone management. Coast. Eng. 54(6–7), 463–475 (2007).


    Google Scholar
     

  • Franks, J. S., Johnson, D. R. & Ko, D. S. Pelagic sargassum in the tropical North Atlantic. Gulf Caribbean Res. 27(1), 6–11. https://doi.org/10.18785/gcr.2701.08 (2016).

    Article 

    Google Scholar
     

  • Wang, M. & Hu, C. Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations. Remote Sens. Environ. 183, 350–367 (2016).

    ADS 

    Google Scholar
     

  • Andriolo, U. Nearshore hydrodynamics and morphology derived from video imagery. Ph.D. dissertation, Faculty of Sciences, University of Lisbon (2018).

  • Holland, K. T., Holman, R. A., Lippmann, T. C., Stanley, J. & Plant, N. Practical use of video imagery in nearshore oceanographic field studies. IEEE J. Oceanic Eng. 22(1), 81–92 (1997).

    ADS 

    Google Scholar
     

  • Holland, K. T. & Holman, R. A. The statistical distribution of swash maxima on natural beaches. J. Geophys. Res. 98, 10271–10278 (1993).

    ADS 

    Google Scholar
     

  • Heikkila, J. & Silven, O. A four-step camera calibration procedure with implicit image correction. In Computer Vision and Pattern Recognition, 1997, Proceedings, 1997 IEEE Computer Society Conference, 1106–1112 (1997).

  • Bergsma, E. W. J., Conley, D. C., Davidson, M. A. & O’Hare, T. J. Videobased nearshore bathymetry estimation in macro-tidal environments. Mar. Geol. 374, 31–41 (2016).

    ADS 

    Google Scholar
     

  • Bouvier, C., Balouin, Y., Castelle, B. & Holman, R. A. Modelling camera viewing angle deviation to improve nearshore video monitoring. Coast. Eng. 147, 99–106 (2019).


    Google Scholar
     

  • Almar, R. et al. A new breaking wave height direct estimator from video imagery. Coast. Eng. 61, 42–48 (2012).


    Google Scholar
     

  • Almar, R. et al. On the use of the radon transform in studying nearshore wave dynamics. Coast. Eng. 92, 24–30 (2014).


    Google Scholar
     

  • Holman, R. & Bergsma, E. W. J. Updates to and performance of the cBathy algorithm for estimating nearshore bathymetry from remote sensing imagery. Remote Sens. 13, 3996. https://doi.org/10.3390/rs13193996 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Birol, F. et al. Coastal applications from nadir altimetry: Example of the X-TRACK regional products. Adv. Space Res. 59(4), 936–953 (2017).

    ADS 

    Google Scholar
     



  • READ SOURCE

    This website uses cookies. By continuing to use this site, you accept our use of cookies.